Решение задачи на определение нормальности раствора
хлорида меди CuCl2 

 

 

 

Задача 1.
Смешали 30 г 30% раствора CuCl2(p=1,1 г/мл) и 20 г CuCl2. Определите нормальность полученного раствора, если его плотность равно 1,2 г/мл.
Решение:
М(CuCl2) = 134,45 г/моль; валентность меди (z) = 2.
Э(CuCl2) = М(CuCl2)/z = (134,45 г/моль)/2 = 67,225 г/моль.

Находим объем первого раствора:

V1(р-ра) = m1(р-ра)/p1(р-ра) = 30 г/1,1 г/мл = 27,27 мл.

Находим массу хлорида меди в первом растворе:

m1(CuCl2) = m1(р-ра)  •  w1% =
= 30 г • 30%/100%  = 9 г (CuCl2);

Находим количество хлорида меди в первом растворе:

n1(CuCl2) = m1(CuCl2)/M(CuCl2) =
= 9 г/(134,45 г/моль) = 0,067 моль.

  Находим нормальность первого раствора:

N1 = (n1(CuCl2) • 1000)/(Э(CuCl2 • 27,27) =
= (0,067 • 1000)/(67,225 • 27,27) = 0,0365 н.

Находим массу второго раствора:

m2(р-ра)  =  m1(р-ра)  +  m2(CuCl2)   = 30 + 20 = 50 г.

Находим объем второго раствора:

V2(р-ра) = m2(р-ра)/p2(р-ра) =
= 50г/1,2г/мл = 41,67 мл.

Рассчитаем нормальность второго раствора из соотношения закона эквивалентов –
N1 • V1 = N2 • V2, получим:

N2 = (N1 • V1)/ V2 =
= (0,0365н • 27,27мл)/41,67 мл = 0,0239 н.

Проверим правильность решения задачи:

N1 •V1 = N2 • V2 ;  
(0,0365 •27,27) = ( 0,0239 • 41.67);
 0,9955  =  0,9959 

Вывод: задача решена правильно.

Ответ: N2 = 0,0239 н.